
BE A GOOD POWERSHELL
CITIZEN

Paul Broadwith

@pauby pauby.com github.com/pauby

Paul Broadwith @pauby

ABOUT ME

•Paul Broadwith
•Freelancer since 2001

•25 years in IT in the defence, government, financial
services and nuclear industry sectors;

•Contact Me
• https://pauby.com

• @pauby

https://github.com/pauby
https://www.linkedin.com/in/paulbroadwith/

Paul Broadwith @pauby

WHAT MAKES A GOOD CITIZEN

•Every group, community or organisation has:
•Rules

•Standards

•Best practice

•Guidelines

•Following the ‘rules’ makes you a good citizen

•Makes it easier to interact and communicate with peers and
colleagues

Paul Broadwith @pauby

10 DO’S AND DON’T’S OF POWERSHELL

1. Develop a style and stick to it

2. Use Advanced Functions

3. Leverage built-in validation

4. Name your things well

5. Filter left, format right

6. Sprinkle comments

7. Avoid technical debt, write help now

8. Use the pipeline and objects

9. Don’t pollute the users session

10. Go green with your code – Reduce, Reuse and Recycle
Paul Broadwith @pauby

IMPORTANCE OF THE DO’S AND
DON’T’S OF POWERSHELL

• If you leave, get sick or get hit by a bus

•Peer review easier

•Post code online such as PowerShell Gallery or
Github

•Consistency leads to Trust leads to Reuse and
Recycle

Consistency

Trust

Reuse and
Recycle

Paul Broadwith @pauby

DEVELOP A STYLE AND
STICK TO IT

Paul Broadwith @pauby

DEVELOP A STYLE AND STICK TO IT

Choose a bracing style, naming style, help style and comment
style:

 Whatever you choose,
BE CONSISTENT!

Paul Broadwith @pauby

DEVELOP A STYLE AND STICK TO IT

Don’t:
Use Hungarian Notation – dynamically typed language

Use aliases in code – they may not be available or change

Rely on positional parameters in code – they may change

Do:
Use full cmdlet, function and parameter names in your code

Paul Broadwith @pauby

USE ADVANCED
FUNCTIONS

Paul Broadwith @pauby

WHY USE ADVANCED FUNCTIONS

Allows your function to accept -Verbose, -Debug,
-WhatIf, -Confirm, -ErrorAction and others.

Access to the pipeline

Parameter Sets

Paul Broadwith @pauby

JUST DO IT!

Define advanced function using [CmdletBinding()]

Use man about_functions_advanced

Paul Broadwith @pauby

LEVERAGE BUILT-IN
VALIDATION

Paul Broadwith @pauby

LEVERAGE BUILT-IN VALIDATION

•ParameterAttributes
•Mandatory – prompts if parameter

is missing.
• HelpMessage –what is required

•#Requires statement
•States code pre-requisites

•Set-StrictMode statement
•Generates a terminating error when basic best-practice coding rules

are violated

Paul Broadwith @pauby

LEVERAGE BUILT-IN VALIDATION

•Validation attributes
•[ValidateCount(min, max)]

•[ValidateLength(min, max)]

•[ValidatePattern(<REGEX>)]

•[ValidateScript({<SCRIPTBLOCK>})]

•Assign defaults to parameters

Paul Broadwith @pauby

NAME YOUR THINGS WELL

Paul Broadwith @pauby

NAME YOUR THINGS WELL

•Use common parameter names
•-Path, -Computername, -Destination

•Use singular naming
•Get-Item, Get-ADUser, Add-AppxPackage

•Use descriptive names for variables, functions,
parameters and modules:

Paul Broadwith @pauby

FILTER LEFT, FORMAT
RIGHT

Paul Broadwith @pauby

FILTER LEFT, FORMAT RIGHT

•Filter at the source

•Not afterwards

•Format before output

Paul Broadwith @pauby

SPRINKLE COMMENTS

Paul Broadwith @pauby

COMMENTING YOUR CODE

Top-down linear code almost comments itself

Use Write-Verbose to comment your code
Displayed on the host with the –Verbose parameter

Describes your code as you go

Comment for somebody else
You know what it does and how it does it, the rest of the world

does not!

Paul Broadwith @pauby

COMMENTING NIRVANA

Comments should not explain the obvious

Comments should be used to explain the not-so-obvious

Paul Broadwith @pauby

AVOID TECHNICAL DEBT –
WRITE HELP NOW

Paul Broadwith @pauby

HELP ON HELP

Says what your code does
 .SYNOPSIS
 .DESCRIPTION

Says what parameters are available, how and required
 .PARAMETER

Gives a demo of how to use the code
 .EXAMPLE

 Add help to each function you write as you go along – don’t pretend
you will do it later!

Paul Broadwith @pauby

WRITING HELP

As a minimum add:
 .SYNOPSIS
 Tweet length description of your code

 .PARAMETER
 One for each parameter
 Say what it’s used for

 .EXAMPLE
 One or two examples of using your code
 Used as a basis for unit testing (with Pester)

Use Control-J and select
Cmdlet (advanced function)

Use <# before or within a function

QUICKLY ADD HELP TO YOUR CODE

Paul Broadwith @pauby

USE THE PIPELINE AND
OBJECTS

Paul Broadwith @pauby

AVOID WRITE-HOST, EXCEPT WHEN
YOU CAN’T

•Write-Host output cannot be captured

•Allow the user to choose if they want to see your “I’m
doing this” messages with Write-Verbose

•Use Write-Debug to display debugging information such
as contents of viarables

•Use Write-Warning or Write-Error to notify

Paul Broadwith @pauby

AVOID WRITE-HOST, EXCEPT WHEN
YOU CAN’T

•Write-Host is the only cmdlet to display coloured text

•It allows formatted(ish) text with -NoNewLine

•It’s easy and quick to use

•The user will always be shown it

•The user does not have to do anything
•No need to add –Verbose or –Debug parameters

Paul Broadwith @pauby

OBJECTS

•Anatomy of an object:
•Properties
•Size

•Length

•Name

•Methods
•Trim()

•ToString()

Paul Broadwith @pauby

OBJECTS

•EVERYTHING in PowerShell is an object

Paul Broadwith @pauby

CREATING YOUR OWN OBJECTS

•Create your own objects for output

•Bend the output of other cmdlets to your will!

Paul Broadwith @pauby

USE THE PIPELINE

•Most cmdlets use the pipeline

•Code to use the pipeline

•Allows cmdlets and functions to be chained together

Paul Broadwith @pauby

USE THE PIPELINE

•Code to use the pipeline

Paul Broadwith @pauby

IT’S ALL ABOUT THE PIPELINE

Paul Broadwith @pauby

DON’T POLLUTE THE
USERS SESSION

Paul Broadwith @pauby

UNDERSTANDING SCOPE

Scope What’s in it

Global Everything created when PowerShell starts;
Everything created at the console;

Script Created when a script runs and only commands
in the script run in this scope;

Local Current scope and can be any scope;

Private Cannot be seen outside of the current scope

Numbered Scope Relative scopes;
0 is current scope;
1 is parent scope
2 is parent’s parent scope…

Paul Broadwith @pauby

DON’T POLLUTE THE USERS SESSION

•Don’t use $ErrorActionPreference

•Don’t clear the screen buffer using CLS!

•Use $Script: and not $Global: for creating and
referencing ‘script global’ variables

•Save any changes you have to make and restore them
when complete

Paul Broadwith @pauby

GO GREEN WITH YOUR
CODE

Paul Broadwith @pauby

SAVE PLANET CODE – GO GREEN

Reduce
•Code size reduces

•Readability increases
Code Size

ReadabilityComplexity

Maintainability

•Complexity reduces
•Maintainability increases

Paul Broadwith @pauby

SAVE PLANET CODE – GO GREEN

Reuse
•Focus narrows

•Reusability increases
Focus

ReusabilityUnreliability

Reuse

•Reuse increases
•Potential for bugs & unreliability
decreases

Paul Broadwith @pauby

SAVE PLANET CODE – GO GREEN

Recycle
•Caution decreases
•Recyclability increases

Caution

Recyclability
Unreliability

Reuse

•Dependencies decrease
•Recyclability increases

Steal from the best, write the rest. – Ed Wilson, The
Scripting Guy

Paul Broadwith @pauby

QUESTIONS?

Paul Broadwith @pauby

RESOURCES

PowerShell Practice & Style Guide
https://github.com/PoshCode/PowerShellPracticeAndStyle

Paul Broadwith @pauby

THANK YOU!

Paul Broadwith

@pauby pauby.com github.com/pauby

Paul Broadwith @pauby

